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Abstract

Objective—With the current widespread use of 3D facial surface imaging in clinical and research 

environments, there is a growing demand for high quality craniofacial norms based on 3D imaging 

technology. The principal goal of the 3D Facial Norms (3DFN) project was to create an 

interactive, web-based repository of 3D facial images and measurements. Unlike other 

repositories, users can gain access to both summary-level statistics as well as individual-level data, 

including 3D facial landmark coordinates, 3D-derived anthropometric measurements, 3D facial 

surface images and genotypes from every individual in the dataset. The 3DFN database currently 

consists of 2454 male and female participants ranging in age from 3–40 years. These subjects 

were recruited at four US sites and screened for a history of craniofacial conditions. The goal of 

this paper is to introduce readers to the 3DFN repository by providing a general overview of the 

project, explaining the rationale behind the creation of the database, and describing the methods 

used to collect the data.

Supplement—Sex and age-specific summary statistics (means and standard deviations) and 

growth curves for every anthropometric measurement in the 3DFN dataset are provided as a 

supplement. These summary statistics and growth curves can aid clinicians in the assessment of 

craniofacial dysmorphology.
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The Importance of Normative Craniofacial Data

The success of investigations into the underlying causes and effective treatment of 

craniofacial malformations depends on the acquisition of objective, reliable, and carefully 

collected data on the craniofacial phenotype. Many individuals with congenital anomalies 

that affect the head and face present with subtle morphological disturbances. Implicit in any 

description of facial dysmorphology is the notion that the phenomenon under consideration 

represents a deviation from some “normal” or baseline state. Thus, all descriptions of 

dysmorphology are inherently comparative by nature. As a consequence, an understanding 

of what constitutes the range of normal variation for craniofacial features is essential. 

Although attempts to quantify the human face date back to antiquity, standardized methods 

for measuring the human face were only developed in the early 20th century (Hrdlicka, 
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1952; Kolar and Salter, 1997). In response to the need by the clinical community for 

population-based norms, large datasets comprised of standardized facial anthropometric or 

cephalometric measures were eventually constructed (Feingold and Bossert, 1974; Saksena 

et al., 1987; Farkas and Munro, 1987; Farkas, 1994). In order to fully capture the variation 

present in the general population while simultaneously providing age-, sex- and ethnicity-

specific normative data, large numbers of healthy individuals were required for these 

databases. These normative datasets are routinely used by clinicians and researchers to 

determine how measurements from where a particular patient or subject compare to those of 

their peers (e.g., by constructing Z-scores) and to perform group-based morphological 

comparisons (e.g., Kolar et al., 2010). When quantitative measurements are combined with 

genomic information within a single craniofacial database, the possibility of mapping the 

genes that underlie normal variation in craniofacial traits becomes possible (Paternoster et 

al., 2012).

Existing Craniofacial Normative Repositories and their Limitations

Available collections of normative data on facial measures typically suffer from one or more 

major technical and/or demographic limitations. Almost all existing databases are comprised 

of measures derived entirely from either cephalometry (Saksena et al., 1987; Love et al., 

1990; Bhatia and Leighton, 1993; Basyouni and Nanda, 2000) or traditional anthropometry 

(Garrett and Kennedy, 1971; Feingold and Bossert, 1974; Hajnis, 1974; Juberg et al., 1975; 

Dekaban, 1977; Jones et al., 1978; Sivan et al., 1984; Farkas and Munro, 1987; Méhes, 

1987; Gordon et al., 1989; Farkas, 1994; Borman et al., 1999; Porter and Olson, 2001; 

Bozkir et al., 2003; Farkas et al., 2003; 2004; Cho et al., 2006; Du et al., 2008). Because 

cephalometry results in a flattened 2D representation of complex 3D structures, measures 

based on this imaging modality are inherently limited in their ability to accurately capture 

important aspects of facial morphology (Moyers and Bookstein, 1979, McIntyre and 

Mossey, 2003). In addition, the imaging process involves radiation exposure. For normative 

craniofacial data resources based on traditional anthropometry, measures are taken manually 

with calipers, angle finders and/or rulers (Lohman et al., 1988; Hall et al., 1989; Farkas, 

1994; Kolar and Salter, 1997). This process is time consuming, requires specialized training, 

and is often poorly tolerated by very young children. In addition, the calibration of 

measurement protocols across examiners can be difficult, particularly when measurements 

are being collected by different research teams at different sites (as is often the case when 

collecting very large datasets). The most well known and most comprehensive dataset of this 

kind was compiled by Dr. Leslie Farkas and colleagues in the 1980’s and 1990’s (Farkas, 

1994). Kolar (1993) has pointed out numerous problems with this particular dataset, the 

most serious of which stem from inconsistent data collection protocols. Another major 

source of normative facial anthropometric measures are military datasets (Garrett and 

Kennedy, 1971; Gordon et al., 1989; Young, 1993), however these generally contain a very 

limited number of craniofacial measures, many of which are not included in the medical 

anthropometry canon, and are confined to a narrow age range.

Regardless of their target population, available craniofacial anthropometric databases all 

share some additional demographic limitations. For example, biomedically-oriented datasets 

rarely include measures on individuals over the age of 18 years, and often use overly broad 
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age intervals for very young individuals. Many of these sources are comprised of data 

collected decades ago, opening up the possibility that their norms are no longer relevant due 

to secular population trends (Jantz et al., 2000). Likewise, very little data are currently 

available for non-European Caucasian samples. A further limitation relates to the fact that 

currently available normative databases present only summary data; i.e., only age- and sex-

specific means and standard deviations are available for various anthropometric measures. 

Lack of access to the original source material (i.e., individual-level data) severely limits the 

ability of outside investigators to perform additional analyses. Unfortunately, many 

researchers, in their desire for convenient normative data, have simply ignored these 

limitations. For example, older adult subjects are sometimes matched against database 

norms for much younger individuals, despite ample evidence that the face continues to 

change throughout the lifespan (Baer, 1956; Behrents, 1985). Clearly, new and expanded 

normative craniofacial resources are needed.

The Need for Craniofacial Norms in 3D

Standard anthropometric data on the head and face can also be obtained in 3D using a 

variety of imaging modalities. Not all modalities, however, are amenable to large-scale 

normative phenotyping. Although 3D CT technology is readily available, the scanning costs 

and radiation exposure make this imaging modality problematic. While MRI does not 

expose subjects to radiation, it has similar cost constraints. Moreover, neither imaging 

modality is optimized for capturing facial surface data on living subjects, in part due to their 

long scan times. Non-contact surface-based 3D imaging devices are, however, perfectly 

suited for this task. Laser scanning devices, although used principally in engineering and 

industrial design applications, have been adapted for medical imaging (Moss et al., 1989; 

Aung, 1999; Da Silveira et al., 2003). Although highly accurate 3D models are possible with 

laser scanning, relatively slow capture times, limited facial surface coverage and patient 

concerns about lasers are persistent problems. Due to these limitations, alternative surface 

imaging technologies have largely taken the place of laser scanning for craniofacial 

applications.

The latest generation of 3D digital stereophotogrammetry devices, for instance, allow for 

extremely fast (1/500 second) captures of the entire facial surface in a completely 

noninvasive manner (Jacobs, 2001; Weinberg and Kolar, 2005; Carnicky and Chorvat, 2006; 

Lane and Harrell, 2008). Briefly, in 3D digital stereophotogrammetry, the participant’s face 

is simultaneously captured by multiple imaging sensors with overlapping fields of view. 

During image capture, a light pattern is typically projected onto the facial surface, which 

guides stereo-triangulation algorithms to construct a geometrically accurate 3D surface 

model comprised of thousands of discrete points with known XYZ coordinate locations. The 

resulting 3D model can be visualized as a simple mesh surface or rendered in a photo-

realistic manner, with surface features like skin color and texture mapped in high-resolution 

onto the underlying geometry. The accuracy and precision of anthropometric measures 

derived from 3D stereophotogrammetric images is now well established (Ayoub et al., 2003; 

Weinberg et al., 2004; Aldridge et al., 2005; Losken et al., 2005; Krimmel et al., 2006; Wong 

et al., 2008). Over the last decade, these devices have become more streamlined and 
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affordable, and now “turnkey” stereophotogrammetry systems are commonplace in many 

research and clinical centers (Heike et al., 2009).

Although, in principle, measures derived from 3D surface images can be compared to data in 

traditional anthropometric databases, this is far from ideal. Many measurements simply do 

not translate well from one method to the other (Weinberg and Kolar, 2005). Furthermore, 

the results of studies designed to compare measures from 3D images to direct anthropometry 

are equivocal at best; some 3D systems perform better than others, and some kinds of 

measurements are more consistent across methods than others (Aung et al., 1995; Baca et 

al., 1994; Shaner et al., 1998; Douglas et al., 2003; Weinberg et al., 2004). This problem is 

compounded when the normative data being compared against were collected by an 

independent set of examiners several decades earlier. These facts argue that 3D imaging 
methods ultimately require 3D normative data. Consequently, because comprehensive 3D 

normative anthropometric databases have generally not been available, researchers have 

been required to collect their own private control samples in order to carry out proper 

morphological comparisons. This amounts to an inefficient duplication of effort and may 

even negatively impact study quality, since research groups must direct substantial time, 

energy and finances at recruiting controls instead of more cases.

Despite the many benefits and widespread use of 3D facial surface imaging, few 

comprehensive normative anthropometric datasets based on this technology currently exist 

(Hammond and Suttie, 2012). While there have been several notable efforts to acquire 3D 

facial images on large numbers of healthy individuals (Ferrario et al., 1999; Yamada et al., 

2002; Sforza et al., 2004; Marcus et al., 2009; Evison et al., 2010; Gor et al., 2010; Lipira, 

2010; Toma et al., 2012), these 3D datasets unfortunately share many of the same limitations 

as more traditional anthropometric datasets. For example, these datasets are typically limited 

in terms of demographic coverage or employ sampling strategies that severely limit their use 

as norms. More importantly, though, these existing 3D datasets – in particular the raw 

individual-level data that comprise these datasets – are generally not accessible by outside 

researchers. They effectively exist as private datasets, with access limited by design and 

collected with the intention of being used by only a small group of investigators. 

Furthermore, none of these datasets currently provide any means for the broader research 

and clinical community to interact with them in a meaningful way. These limitations 

severely diminish the usefulness and potential of existing 3D facial datasets to impact 

scientific discovery and clinical care.

The 3D Facial Norms Project

For all of the reasons highlighted above, the 3D Facial Norms (3DFN) project was initiated 

in 2009 as part of the FaceBase Consortium (https://www.facebase.org), a National Institute 

of Dental and Craniofacial Research (NIDCR) initiative. In its initial configuration, the 

FaceBase consortium consisted of 10 interlinked projects focused on generating craniofacial 

research data (e.g., tissue-specific gene expression arrays, phenotypic image atlases, 

genotype-phenotype databases) across multiple organisms and a central bioinformatics hub 

whose mission is to integrate these datasets and make them available to the broader scientific 

community (Hochheiser et al., 2011). The principal goal of the 3DFN project was to 
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construct a large, web-based, interactive craniofacial normative database comprised of 3D 

facial images, morphometric variables, qualitative descriptors, and genomic markers for both 

the clinical and research community (https://www.facebase.org/facial_norms). Through its 

web interface users can perform highly customizable searches of the 3DFN database and – 

assuming they have the proper permissions – download individual-level data, including 3D 

images and genotypic markers, for their own analyses. No other normative craniofacial 

database allows this type of interactive querying and downloadable access to original source 

data. The remainder of this paper will provide a basic overview of the 3DFN database.

Recruitment and Screening of Participants

During the initial five-year phase of the 3DFN project, the goal was to recruit 3500 unrelated 

individuals ranging in age from 3–40 years. This total recruitment figure was based on the 

ideal scenario of recruiting 50 males and 50 females at each age category (Kolar and Salter, 

1987). The current dataset contains 2454 individuals: 952 males and 1502 females. The 

basic age categories and the age and sex distribution are provided in Table 1. Recruitment 

for this first phase was limited to individuals of recent European ancestry. Ancestry was self-

reported by participants, who were asked to confirm that all of their maternal and paternal 

grandparents were of European descent. Both the age and ancestry restrictions in the initial 

project phase were due largely to issues of feasibility and cost, and our goal is to expand the 

database to capture additional racial/ethnic groups and ages in the future.

Individuals were recruited for the 3DFN project at four US sites across the country: 

Pittsburgh PA; Seattle, WA; Houston, TX; and Iowa City, IA. The strategy for recruitment 

involved a combination of targeted advertisement, peer referral, leveraging existing research 

registries, and participation at public venues (e.g. museums, state fares). Participants were 

pre-screened either prior to appointments or on-site by study recruiters. Participants or their 

parents were asked to verify their ancestry and age. Additional exclusion criteria included 

any of following: (1) personal history of facial trauma, (2) a personal history of facial 

reconstructive or plastic surgery, (3) a personal history of orthognathic/jaw surgery or jaw 

advancement, (4) a personal history of any facial prosthetics or implants, (5) a personal 

history of any palsy, stroke or neurological condition affecting the face, (6) a personal or 

family history of any facial anomaly or birth defect, and/or (7) a personal or family history 

of any syndrome or congenital condition known to affect the head and/or face. Further, we 

excluded individuals with non-removable facial piercings other than small studs and/or the 

presence of prominent facial hair. Participants who arrived for study appointments with an 

unacceptable amount of facial hair were given the opportunity to shave on-site or return at a 

later time.

Phenotyping Protocol

The entire study protocol was completed in less than 30 minutes for most participants. 

Following informed consent, each participant was assigned a unique alphanumeric 

sequential study ID. A brief demographic questionnaire was then administered to capture the 

participant’s self-reported age, sex, ancestry, height and weight. Using Oragene collection 

kits (DNA Genotek Inc., Ontario, Canada), a single saliva sample was obtained for 
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participants over the age of five; for participants under five years of age, two samples were 

obtained to ensure adequate DNA yield. All participants were asked not to eat or drink 

anything for at least 30 minutes prior to their appointment, so as not to interfere with saliva 

collection. For children unable to spit into the collection tube, Oragene sponge applicators 

were used to collect saliva directly from the oral cavity. Participants who experienced 

difficulty producing adequate saliva were offered packets of sugar to stimulate saliva flow. 

Each kit was labeled using a matrix barcode containing the participant’s coded study ID to 

facilitate electronic sample tracking and processing.

Following saliva collection, a series of five craniofacial measurements were obtained on 

each participant using traditional spreading calipers. These measurements were deemed 

important for providing a complete description of the craniofacial phenotype (e.g., head 

width and length) but are difficult to obtain indirectly from 3D surfaces (Weinberg and 

Kolar, 2005). These measurements are listed in Table 2.

Participants then had their facial surface captured via 3D stereophotogrammetry. All 

recruitment sites used the same validated 3D surface imaging technology from 3dMD 

(Atlanta, GA); all sites used two-pod 3dMDface systems, while one site also used a multi-

pod 3dMDcranial system designed to capture 360-degree images of the head. In preparation 

for facial imaging, participants were asked to remove any jewelry or accessories that could 

interfere with the capture process. When necessary, the participant’s hair was pinned back to 

keep it from obscuring the ears and forehead. Selected landmarks were labeled directly on 

the participant’s face using skin-safe markers (e.g., tragion, gnathion and pronasale) in order 

to facilitate later landmark identification from the resulting 3D surface images. Participants 

were positioned in front of the imaging system with their head facing forward and titled 

slightly back to ensure coverage under the nose and chin. During capture, participants were 

instructed to keep their eyes open and their lips gently closed, to maintain a neutral facial 

expression, and to keep their face relaxed. Each capture was inspected on the spot to ensure 

3D surface quality and additional captures were obtained as needed.

Saliva Sample Processing

Completed Oragene kits were sent via mail from each recruitment site to the coordinating 

center (University of Pittsburgh) for processing. Upon receipt, the barcode ID labels were 

read with a scanner and entered into sample tracking log spreadsheet. Using standard 

protocols, the DNA was extracted from each sample and aliquots were stored for 

genotyping.

3D Image Processing, Landmarking and Inter-landmark Distance 

Calculation

3D facial surface files were transmitted electronically from each recruitment site to the 

coordinating center on a rolling basis. At the coordinating center, the 3D surfaces were 

inspected for initial quality and cleaned. Cleaning involved discarding extraneous portions of 

the 3D model such as excessive hair and portions of the neck and shoulders. The trimmed 

3D model was then rotated to a standard face-forward position and re-saved, preserving the 
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new orientation. No surface smoothing or hole-filling routines were run on any of the facial 

surfaces. A standard set of 24 facial surface landmarks was then collected from each 3D 

facial model (Figure 1). The choice of facial landmarks was based on providing the 

maximizing facial coverage while minimizing the error associated with landmark 

identification on 3D surfaces. A detailed account of the procedures used to identify these 

landmarks on 3D facial surfaces can be found on the “Technical Notes” section of the 3DFN 

website: https://www.facebase.org/facial_norms/notes. The final image processing step 

involved exporting the cleaned 3D facial model as an object wavefront (.obj) file.

Using an automated process, the 24 landmark coordinates collected from each 3D facial 

surface were combined into a single relational database. A set of 29 inter-landmark facial 

measurements was then generated automatically. These distances correspond to traditional 

anthropometric facial measurements (Farkas, 1994) and were chosen primarily on the basis 

of clinical utility. The calculated anthropometric measurements are listed in Table 2.

Quality Control of Phenotypic Data

Quality control starts at 3D image acquisition. Study staff at each recruitment site were 

trained on proper acquisition technique and how to evaluate 3D facial surfaces for quality 

and coverage (Heike et al., 2010). Once 3D surfaces were received at the central 

coordinating center, trained raters again evaluated the surfaces for initial quality. Only if a 

3D surface was deemed of sufficient quality to proceed did trained evaluators proceed to 

landmarking. To ensure quality and consistency, each evaluator engaged in landmarking 

completed a three-phase training process prior to working with any 3DFN surfaces. In the 

first phase, presumptive evaluators were required to familiarize themselves with landmark 

definitions and identification strategies. In the second phase, evaluators were introduced to 

the landmarking software environment (3dMDvultus) and asked to identify all 24 landmarks 

on a test set of 10 different facial surfaces of varying age and sex. An independent expert 

then reviewed the placement of the landmarks and provided feedback to the evaluator 

regarding any problems. In the third phase, the evaluator must landmark an additional test 

set of 20 surfaces twice, with at least 48 hours between landmarking sessions. The degree of 

Intra-observer error was then assessed by comparing the x,y and z components of each 

landmark across the two sessions with intraclass correlation coefficients. The threshold for 

acceptable intra-observer error for each landmark in each of the three principal axes is 0.90. 

Values below this threshold indicate that additional practice is required, and evaluators may 

not proceed to working on 3DFN data until they have successfully remediated.

Following collection, additional quality control measures are in place to check the resulting 

landmark data and derived measurements. Using a semi-automated process, the 24 landmark 

coordinates collected from each 3D facial surface were screened for common errors such as 

incorrect order and left-right reversals. This was accomplished by visually inspecting the 

landmark configuration for each subject as a simple wireframe using a locally developed 

program and subjecting the landmark coordinate data to simple logic rules based on 

expected spatial patterns.
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Each of the automatically generated set of 29 inter-landmark distances for each participant 

was then screened for outliers by calculating sex and age appropriate Z-scores. Z-scores 

greater/less than 3.0 were flagged and the participant’s 3D surface was checked manually for 

errors in landmark placement or potential problems with the participant’s age.

Demographic information and traditional caliper measurements were collected using 

machine-readable data collection forms. These forms were transmitted as PDFs from the 

recruitment sites to the coordinating center, where they were scanned, verified and 

automatically uploaded to a database. All form data collected were screened for outliers and 

discrepancies.

Exploring and Interacting with Summary-Level Phenotypic Data

3DFN data are available for investigators at both the summary and individual level. 

Summary-level data are aggregated and include linear facial measurements averaged for the 

various age and sex groups. These summary data are akin to the traditional tabulated norms 

available from direct anthropometry by Farkas and others, except they are derived from 3D 

surface images. Means and standard deviations are available for the entire set of 29 3D-

derived linear distances and the handful of additional measurements obtained manually 

using calipers; they are available for males and females separately and the sexes combined, 

at each age category from 3–40 years. For the summary statistics, age categories were set at 

one year intervals from 5–30 years. From age 3–5 years, the data were divided into half-year 

intervals, to better capture the rapid facial growth during this period (Table 1). For ages 

above 30 years, participants were lumped into two year age intervals. Figure 2 shows a 

partial screenshot from the 3DFN web interface showing age- and sex-specific summary 

statistics for a given measurement.

In addition to basic search and viewing, website users can interact with summary data 

through a Z-score calculator tool. With this tool users are able to compare measurements 

obtained from an outside research subject or patient to the 3DFN Dataset (Figure 3). The 

user simply enters the sex and age of the subject to be compared and selected the 

measurement of interest. This can be done for multiple measurements simultaneously, 

providing the clinician with an overall picture of how similar (in standard deviation units) a 

given patient is to the average of their sex and age-matched peers. Of course, the validity of 

such comparison assumes that the patient’s measurements being compared are collected 

using similar methods. Those who wish to use the mean and standard deviation data in order 

to carry out their own comparisons are also able to download the full summary statistics for 

each measurement in the 3DFN Dataset as a .csv file; this can be accomplished directly 

through the project website.

Through the FaceBase Consortium all phenotypic summary data belonging to the 3DFN 

Dataset are available unrestricted to the craniofacial research and clinical community as well 

as the general public. In addition, summary statistics and growth curves (with standard 

centiles) for each measurement are available in a supplement to this article. General terms of 

use, including requirements for attribution, are described in a Data Use Certification 

document available through the FaceBase website.
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Querying and Obtaining Individual-Level Phenotypic Data

One of the major advantages of the 3DFN Database is that users need not be limited to the 

simple summary statistics provided through the web interface. In 3DFN, the raw phenotypic 
data for each individual participant in the repository are also obtainable. Available 

individual-level phenotypic data include the entire set of 24 3D facial landmarks (and their 

associated x,y,z coordinate positions), all 34 anthropometric facial measurements (inter-

landmark distances) and basic demographic and physical descriptors (e.g., height) for every 

participant in the 3DFN Database. In addition to the variables listed above, the entire set of 
2454 3D facial surfaces is available to researchers and clinicians with the proper credentials. 

These 3D surfaces have been stripped of identifying color and texture surface features, 

leaving only the surface geometry and are available in the non-proprietary object wavefront 

(.obj) format, which can be opened with a wide variety of commercial and free 3D image 

visualization programs (e.g., Meshlab).

The individual-level data can be queried through a simple point-and-click graphical web 

interface where users can define search parameters (Figure 4). For example, users can limit 

queries to only one sex or a specific age or range of ages. Further, users can limit searches to 

specific variables of interest: landmarks, linear distances, 3D facial surfaces, etc. Through 

this contextualized search, users can investigate how many individuals in the 3DFN Dataset 

have specific phenotypic data of interest. Searches can be very narrow or very broad. A user, 

for example, could construct a very narrow query to ask how many five-year old males in the 

dataset have a single measurement available. Alternatively, a user could investigate all 

measurements in both males and females across all possible ages. Once the query is 

submitted a results page is returned showing the number of individuals contained within the 

3DFN Dataset that meet the under-defined criteria and the frequency of missing data. The 

search process can then be repeated, revising the criteria each time.

An important point for potential users to understand is that access to individual-level 

phenotypic data in 3DFN is controlled. Outside investigators must apply for access directly 

through the FaceBase Consortium. The application process involves several steps: (1) 

preparing a Data Access Request form specifying the type(s) of data being sought and the 

nature of the research being conducted, (2) signing a Data Use Certification document that 

specifies the rules and obligations investigators must adhere to should they be granted 

access, and (3) providing evidence of appropriate IRB or local ethics committee review of 

the proposed work. The level of IRB/ethics review required depends in part on the exact type 

of data being requested. A data access committee led by the NIDCR reviews each data 

request. More details regarding access to human datasets can be found on the FaceBase 

website.

Once access is granted, investigators have the ability to work with the full dataset locally; 

the data will be delivered as a standard flat file, which can be opened by any spreadsheet 

program. Guides to variable naming, definitions and coding is available on the “Technical 

Notes” portion of the 3DFN website. With these data in hand, investigators can perform any 

number of analyses using the landmark coordinates and/or measurements provided, or new 

and additional measurements can be derived. If the investigator requests and is granted 
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access to the 3D facial surfaces, a virtually unlimited number of phenotypes can be derived 

opening up a multitude of possibilities for analysis.

To our knowledge, 3DFN is the only dataset currently available that allows interaction with 

and access to large-scale, individual-level craniofacial anthropometric data, including raw 

3D facial surfaces.

Availability of Genomic Data

Another critical element that makes the 3DFN Database unique is the availability of 

genotype data in addition to phenotypic measurements and 3D facial surfaces. In 

collaboration with the Center for Inherited Disease Research (CIDR), subjects in the 3DFN 

Database have been genotyped using a genome-wide association (GWA) array consisting of 

964,193 SNPs (Illumina OmniExpress+Exome v1.2) plus an additional 4322 custom SNPs 

chosen based on prior craniofacial genetic studies. The genetic dataset has been imputed 

using the 1000 Genomes reference panel and quality checked according to protocols 

developed at the University of Washington CIDR Genetics Coordinating Center. The 

availability of high-resolution genetic markers in conjunction with derived anthropometric 

phenotypes and 3D facial surfaces makes the 3DFN Dataset a powerful resource for the 

craniofacial research community. The genomic data will be available to researchers through 

dbGaP’s controlled access repository (http://www.ncbi.nlm.nih.gov/gap) starting in 2016 

(accession number: phs000949.v1.p1).

Potential Uses for the 3DFN Database

Control Data for Craniofacial Comparisons

Collecting craniofacial control data for comparison purposes is essential for many research 

questions involving facial morphology. This can be a time consuming and expensive effort, 

and very often the resulting control samples are too small to adequately capture the range of 

normal human facial variation. As a source of normative control data, the 3DFN Database is 

designed to facilitate the comparison of facial morphology. Because age, sex and ancestry 

are available for every subject in the 3DFN Dataset, comparisons that require strict matching 

are possible. Further, morphological comparisons can be based on traditional linear 

distances, 3D landmark coordinates and/or entire 3D facial surfaces, allowing users to 

employ a wide variety of morphometric analysis methods. As an example, the 3DFN dataset 

was recently used in a comparative study of nasal asymmetry in orofacial clefting (Hong et 

al., 2015).

Analyses of Human Craniofacial Variation and Growth

The 3DFN Database is an excellent resource for exploring questions relating to patterns of 

human facial variation and growth. For example, one can investigate how the face changes 

over the lifespan, how sex differences are manifested in facial structure, or how various 

facial structures are integrated during growth. These questions are of particular interest to 

those working within the fields of physical anthropology, orthodontics and forensics. In a 

recent analysis, the 3DFN database was used to investigate the relationship between prenatal 
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sex hormone exposure (estimated from second-to-fourth digit ratio) and facial shape in male 

adults (Weinberg et al., 2015).

Genomic Studies of Quantitative and Qualitative Craniofacial Traits

One of the principal goals of the 3DFN Database is to provide researchers with the raw 

materials to explore the genetic basis of normal human facial variation. As mentioned above, 

genome-wide SNP markers for individuals with phenotypic information contained in the 

3DFN Dataset will be made available through the dbGaP repository. Importantly, the 

genomic data can be used as an extension and/or replication arm for existing or planned 

GWA analyses of normal human facial traits. Several large-scale genotype-phenotype 

studies of this type have been carried out in recent years (Paternoster et al., 2012; Liu et al., 

2012).

The Development of Novel 3D Image Analysis Methods

The large number of 3D facial surfaces available through the 3DFN Database provide a 

unique resource and testing platform for computer science and computer vision experts 

engaged in the development of novel methods for representing and analyzing human facial 

surfaces. For example, the 3DFN dataset has been used recently to develop improved 

methods for automated facial landmarking (Liang et al., 2013).

Limitations

Although in many ways the 3DFN database is one of the most comprehensive resources of 

its kind, it is not without limitations. Most obviously, the current dataset is limited to 

individuals living in the US who by self-report consider themselves white, non-Hispanic and 

of recent European ancestry. The lack of availability of non-white craniofacial norms 

continues to be a major problem. A handful of 3D studies have begun to address the problem 

(Yamada et al., 2002; Lipira et al., 2010), but these datasets are still limited in scope and 

scale. The situation needs to be rectified, but the prospect of obtaining multi-ethnic 3D 

norms, while maintaining adequate numbers in each age and sex category, is both daunting 

and expensive. An undertaking of this magnitude would undoubtedly take a coordinated 

effort involving many investigators over a number of years.

The 3DFN dataset is also limited in the ages covered, most seriously at the younger end of 

the spectrum. We opted to set the lower age cutoff at three years for practical reasons. 

Consequently, there remains a serious lack of adequate craniofacial norms for very young 

children – whether 3D or traditional. Currently available craniofacial norms also do not 

provide fine enough age intervals to capture the rapid rate of craniofacial growth during this 

period. The Farkas dataset (Farkas 1994), for example, provides data at only two intervals 

during the first year of life: 0–6 months and 6–12 months. Such intervals are far too broad to 

be of any practical use. A comprehensive project to capture 3D norms at very fine age 

intervals during the first few years of life would be of great importance to the clinical 

community, as surgical corrections for virtually all of the major craniofacial anomalies occur 

during these years.
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As it currently stands, the 3DFN dataset also suffers from inadequate representation in 

certain age groups within the available 3–40 year span. Particularly problematic are the 

numbers in the 14–17 year old age range. Despite our best efforts to recruit older adolescents 

we did not meet our minimum targets. As a result, users should exhibit particular caution 

when comparing against or making conclusions based on data from these more poorly 

represented ages. Depending on the nature of the research being conducted, it may be 

possible to combine some of these ages together, thereby increasing the sample size. 

Because users can gain access to the raw individual-level measurement data, the 3DFN 

database provides this type of flexibility.

Despite these limitations, the 3DFN database remains a valuable resource for the clinical and 

research community. Because the database was built to be scalable, it can be expanded to 

accommodate additional age groups and ethnicities in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
3D facial surface model showing the 24 standard landmarks included in the 3DFN database. 

Landmarks shown in frontal view (A) include: n = nasion; prn = pronasale; sn = subnasale; 

ls = labiale superius; sto = stomion; li = labiale inferius; sl = sublabiale; gn = gnathion; en = 

endocanthion; ex = exocanthion; al = alare; sbal = subalare; cph = crista philtra; ch = chelion 

(for bilateral points only right side labeled). Landmarks shown in the lateral view (B) 

include: ac = alar curvature point and t = tragion (only left landmark shown for these two 

bilateral points).
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FIGURE 2. 
Partial screenshot from the 3D Facial Norms website interface (https://www.facebase.org) 

showing an example of the kind of summary statistics available. Users can download 

summary statistics tables for all measurements in the database as a .csv file.
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FIGURE 3. 
Partial screenshot from the 3D Facial Norms website interface (https://www.facebase.org) 

showing the Z-score calculator tool. The example here uses measures from a hypothetical 18 

year old male individual for illustration purposes. Users can save a report containing all of 

the Z-score results for a given individual.
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FIGURE 4. 
Partial screenshot from the 3D Facial Norms website interface (https://www.facebase.org) 

showing the database search options. Users can select the sex and age groups and types of 

data they are interested in querying. The search results show the number of subjects in the 

database available with the selected search parameters as well as a detailed missing data 

report.
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TABLE 1

3DFN Sample Breakdown by Age and Sex

Age Group* Male Female Total

3 11 13 24

3.5 18 18 36

4 12 13 25

4.5 11 7 18

5 25 21 46

6 21 23 44

7 27 14 41

8 20 16 36

9 17 24 41

10 18 18 36

11 23 22 45

12 24 24 48

13 21 27 48

14 16 14 30

15 16 15 31

16 10 7 17

17 6 10 16

18 30 48 78

19 29 70 99

20 28 72 100

21 41 73 114

22 43 85 128

23 72 105 177

24 48 88 136

25 59 82 141

26 50 64 114

27 37 73 110

28 28 60 88

29 33 39 72

30 37 48 85

31–32 29 88 117

33–34 20 68 88

35–36 25 60 85

37–38 25 52 77

39–40 22 41 63

Totals 952 1502 2454
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*
Age group 3 = 3.00–3.49 years; 3.5 = 3.50–3.99 years; 4 = 4.00–4.49 years; 4.5 = 4.50–4.99 years; 5 = 5.00–5.99 years; etc.
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TABLE 2

Anthropometric Measurements Included in the 3DFN Database

Measurement Region Landmarks

Caliper-Based Measurements

Maximum Cranial Width Head Right Euryon (eu_r) - Left Euryon (eu_l)

Minimum Frontal Width Head Right Frontotemporale (ft_r) - Left Frontotemporale (ft_l)

Maximum Facial Width Face Right Zygion (zy_r) - Left Zygion (zy_l)

Mandibular Width Face Right Gonion (go_r) - Left Gonion (go_l)

Maximum Cranial Length Head Glabella (g) - Opisthocranion (op)

3D Stereophotogrammetry-Based Measurements

Cranial Base Width Head Right Tragion (t_r) - Left Tragion (t_l)

Upper Facial Depth (Right) Face Nasion (n) - Right Tragion (t_r)

Upper Facial Depth (Left) Face Nasion (n) - Left Tragion (t_l)

Middle Facial Depth (Right) Face Subnasale (sn) - Right Tragion (t_r)

Middle Facial Depth (Left) Face Subnasale (sn) - Left Tragion (t_l)

Lower Facial Depth (Right) Face Gnathion (gn) - Right Tragion (t_r)

Lower Facial Depth (Left) Face Gnathion (gn) - Left Tragion (t_l)

Morphological Facial Height Face Nasion (n) - Gnathion (gn)

Upper Facial Height Face Nasion (n) - Stomion (sto)

Lower Facial Height Face Subnasale (sn) - Gnathion (gn)

Intercanthal Width Eye Right Endocanthion (en_r) - Left Endocanthion (en_l)

Outercanthal Width Eye Right Exocanthion (ex_r) - Left Exocanthion (ex_l)

Palpebral Fissure Length (Right) Eye Right Endocanthion (en_r) - Right Exocanthion (ex_r)

Palpebral Fissure Length (Left) Eye Left Endocanthion (en_l) - Left Exocanthion (ex_l)

Nasal Width Nose Right Alare (al_r) - Left Alare (al_l):

Subnasal Width Nose Right Subalare (sbal_r) - Left Subalare (sbal_l)

Nasal Protrusion Nose Subnasale (sn) - Pronasale (prn)

Nasal Ala Length (Right) Nose Right Alar Curvature Point (ac_r) - Pronasale (prn)

Nasal Ala Length (Left) Nose Left Alar Curvature Point (ac_l) - Pronasale (prn)

Nasal Height Nose Nasion (n) - Subnasale (sn)

Nasal Bridge Length Nose Nasion (n) - Pronasale (prn)

Labial Fissure Width Mouth Right Chelion (ch_r) - Left Chelion (ch_l)

Philtrum Width Mouth Right Crista Philtri (cph_r) - Left Crista Philtri (cph_l)

Philtrum Length Mouth Subnasale (sn) - Labiale Superius (ls)

Upper Lip Height Mouth Subnasale (sn) - Stomion (sto)

Lower Lip Height Mouth Stomion (sto) - Sublabiale (sl)

Upper Vermilion Height Mouth Labiale Superius (ls) - Stomion (sto)

Lower Vermilion Height Mouth Stomion (sto) - Labiale Inferius (li)

Cutaneous Lower Lip Height Mouth Labiale Inferius (li) - Sublabiale (sl)
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